

СМИ2-М

Панель оператора

Руководство по эксплуатации

11.2022 версия 1.32

Содержание

Введение	3
Предупреждающие сообщения	3
Используемые термины и аббревиатуры	3
1 Назначение и функции	4
2 Технические характеристики и условия эксплуатации	5
2.1 Технические характеристики	5
2.2 Изоляция узлов	5
2.3 Условия эксплуатации	6
3 Меры безопасности	6
4 Монтаж	7
5 Подключение	8
5.1 Рекомендации по подключению	8
5.2 Назначение контактов клеммника	8
5.3 Подключение по интерфейсу RS-485	9
6 Принцип работы	10
7 Настройка	13
7.1 Порядок настройки	13
7.2 Подключение к ПО «Owen Configurator»	13
7.3 Настройка параметров Modbus	14
7.3.1 Общие настройки	14
7.3.2 Режим Modbus Master	16
7.3.3 Режим Modbus Slave	17
7.3.4 Режим Modbus Spy	18
7.4 Типы данных	20
7.5 Индикация	22
7.6 Встроенная логика	25
7.7 ИНДИКАЦИЯ ОШИООК	30 24
	31
8 Техническое обслуживание	32
8.1 Общие указания	ა∠ აე
	32
9 маркировка	32
10 Упаковка	32
11 Транспортирование и хранение	33
12 Комплектность	33
13 Гарантийные обязательства	33
ПРИЛОЖЕНИЕ А. Список регистров Modbus	34

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием панели оператора СМИ2-М (в дальнейшем по тексту именуемой «прибор» или «индикатор»).

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о непосредственной угрозе опасной ситуации, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые термины и аббревиатуры

Modbus – открытый промышленный протокол обмена, разработанный компанией Modicon. В

настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).

ВИП – вторичный источник питания.

ПК – персональный компьютер.

ПО – программное обеспечение.

ТТЛ – транзисторно-транзисторная логика.

1 Назначение и функции

Прибор предназначен для индикации заданных величин при использовании в сетях RS-485 и может эксплуатироваться в составе систем автоматизированного контроля и управления технологическими процессами в качестве основного или дополнительного индикатора физических величин.

Функции прибора:

- прием информации от Мастера сети RS-485 (в режиме Slave);
- запрос информации от прибора, подключенного к сети RS-485 (в режиме Master);
- получение информации от прибора, подключенного к сети RS-485, в которой уже имеется Мастер сети RS-485 (в режиме **Spy**);
- логическая обработка принятой переменной в соответствии с заданным типом логики;
- индикация значения в соответствии с результатами обработки;
- индикация выхода значения за заданный диапазон;
- индикация аварийной ситуации в случае отсутствия запросов от Мастера сети RS-485 или при получении данных, не поддающихся индикации.

Прибор выпускается согласно ТУ 26.51.70-036-46526536-2020.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

	Наименование	Значение
Питание	Тип питающего напряжения	Постоянное
	Диапазон питающего напряжения	1048 B
	Номинальное напряжение питания	24 B
	Потребляемая мощность, не более	1,6 Вт
Дисплей	Инликатор	Один четырехразрядный
		семисегментный
	Количество цветов	3
	Высота разряда	14 мм
Интерфейс обмена	Тип интерфейса	RS-485
данными	Протокол обмена данными	Modbus ASCII, Modbus RTU
	Режим работы интерфейса	Master, Slave, Spy
	Сигналы интерфейса	A, B
	Гальваническая изоляция между	
	питанием прибора и интерфейсом,	500 B
	не менее	
	Скорость обмена данными	2400, 4800, 9600, 14400, 19200,
		28800, 38400, 57600, 115200 бит/с
	Допустимое число перезаписей flash-	10000
	памяти*, не более	10000
Интерфейс	Тип интерфейса	USB 2.0 (Micro-USB)
конфигурирования		
Корпус	Конструктивное исполнение	Для щитового крепления с
		отверстием диаметром 22,5 мм
	Тип вентиляции	Естественная вентиляция
	Габаритные размеры	$(48.0 \times 26.0 \times 65.4) + 0.5 MM$
	(ширина × высота × глубина)	(+0,0 ~ 20,0 ~ 00,+) ± 0,0 kiki
	Степень защиты корпуса:	
	со стороны лицевой панели	IP65
	со стороны цилиндрической части корпуса	IP20
Общие сведения	Масса прибора, не более	0,1 кг
	Средний срок службы	8 лет
	Прикладное ПО	Owen Configurator
ПРИМЕЧАНИЕ * во flash-памяти >	ранятся конфигурационные параметры п	ірибора

2.2 Изоляция узлов

Схема гальванически изолированных узлов и прочность гальванической изоляции приведена на рисунке 2.1.

Рисунок 2.1 – Изоляция узлов прибора

ПРИМЕЧАНИЕ

Значение изоляции указано для испытаний при нормальных климатических условиях (время воздействия – 1 минута).

2.3 Условия эксплуатации

Прибор предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 40 до +70 °C;
- верхний предел относительной влажности воздуха: не более 80 % при +25 °C и более низких температурах без конденсации влаги;
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 по ГОСТ Р 52931.

3 Меры безопасности

По способу защиты от поражения электрическим током прибор относится к изделиям класса III по ГОСТ 12.2.007.0.

Во время эксплуатации, технического обслуживания и поверки следует соблюдать требования следующих документов:

- FOCT 12.3.019;
- «Правила эксплуатации электроустановок потребителей»;
- «Правила охраны труда при эксплуатации электроустановок».

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Прибор запрещено использовать в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

Щит

Уплотнительная

прокладка

4 Монтаж

i

ПРИМЕЧАНИЕ

Перед установкой прибор следует сконфигурировать, подключив к ПК с помощью кабеля Micro-USB и изменив установленные по умолчанию параметры.

Для установки прибора следует:

1. Подготовить в щите круглое отверстие диаметром 22,5 мм (для предотвращения прокручивания прибора отверстие следует выполнить сложной формы, см. рисунок 4.2).

- 2. Надеть на тыльную сторону передней панели прибора уплотнительную прокладку из комплекта поставки, см. рисунок 4.1.
- 3. Разместить цилиндрическую часть прибора в отверстии щита.
- 4. Надеть на цилиндрическую часть прибора гайку из комплекта поставки и закрутить ее.
- 5. Обеспечить доступ к цилиндрической части прибора за щитом.

Демонтаж прибора следует производить в обратном порядке.

5 Подключение

5.1 Рекомендации по подключению

ПРИМЕЧАНИЕ

Подключение и техническое обслуживание производится только при отключенном питании прибора.

Для внешних связей следует использовать провод с сечением не более 1 мм² (AWG 28...22).

Для многожильных проводов следует использовать наконечники.

Рисунок 5.1 – Рекомендации для проводов

Длина кабеля питания прибора не должна превышать 30 метров.

ПРЕДУПРЕЖДЕНИЕ

Запрещается подключать провода разного сечения к одной клемме.

ПРЕДУПРЕЖДЕНИЕ

Запрещается подключать более двух проводов к одной клемме.

5.2 Назначение контактов клеммника

ПРЕДУПРЕЖДЕНИЕ

Использование источников питания без потенциальной развязки или с базовой (основной) изоляцией цепей низкого напряжения от линий переменного тока может привести к появлению опасных напряжений в цепях.

Рисунок 5.3 – Установка клеммника

5.3 Подключение по интерфейсу RS-485

Связь прибора по интерфейсу RS-485 выполняется по двухпроводной схеме.

Длина линии связи должна быть не более 1200 метров.

Обесточенный прибор следует подключать к сети RS-485 витой парой проводов, соблюдая полярность.

Провод А подключается к выводу А прибора, аналогично соединяются между собой выводы В.

ПРИМЕЧАНИЕ

Интерфейс RS-485 также работает при питании индикатора от Micro-USB.

6 Принцип работы

Функциональная схема прибора приведена на рисунке 6.1.

Прибор состоит из следующих функциональных блоков:

- микроконтроллер обрабатывает информацию, поступающую по сети RS-485;
- ВИП с гальванической развязкой осуществляет стабилизированное питание прибора, защищает прибор от перенапряжения и неправильного подключения питания;
- преобразователь ТТЛ ↔ RS-485 конвертирует сигналы сети RS-485 в сигналы ТТЛ, которые принимает микроконтроллер;
- четырехразрядный семисегментный цифровой индикатор отображает полученную по сети RS-485 информацию и аварийные сообщения.

ПРИМЕЧАНИЕ

При питании прибора от Micro-USB яркость индикатора снижается относительно рабочего режима на 50 %.

Принцип работы прибора для всех режимов приведен на рисунке 6.2.

Информация, поступающая на прибор по сети RS-485, перед выводом на дисплей преобразуется согласно параметрам, установленным в настройках прибора:

• таймаут безопасного состояния – время, в течение которого прибор ожидает поступление информации по сети RS-485. По истечении заданного времени прибор выводит на дисплей

сообщение, соответствующее **битовой маске безопасного состояния**. Если значение таймаута равно 0, то по истечении времени таймаута прибор не переходит в безопасное состояние, а на дисплее отображается последнее полученное значение;

- порядок байт позволяет изменить порядок байт и/или регистров поступающей на прибор информации;
- тип переменной определяет формат вывода полученной информации;
- коэффициент наклона определяет множитель поступающего на прибор значения;
- коэффициент сдвига определяет, какое число требуется прибавить или отнять от поступающего на прибор значения (после применения коэффициента наклона);
- число ведущих нулей используется только для целочисленных значений без масштабирования (коэффициент сдвига равен 0, коэффициент наклона равен 1) для добавления дополнительных нулей перед числом на дисплее;
- положение десятичной точки определяет степень смещения десятичной точки при отображении целых или вещественных чисел.

Подробнее параметры описаны в разделе 7.3.1 и разделе 7.5.

7 Настройка

7.1 Порядок настройки

Перед эксплуатацией следует настроить прибор:

- 1. Подключить прибор к ПО «Owen Configurator» (см. раздел 7.2).
- 2. Установить требуемые параметры режима работы (см. раздел 7.3.2 для настройки режима Modbus Master, раздел 7.3.3 для Modbus Slave и раздел 7.3.4 для Modbus Spy).
- 3. Установить требуемые параметры типа отображаемых данных (см. раздел 7.4).
- Установить требуемые параметры вывода данных на дисплей прибора (см. раздел 7.5 и раздел 7.6).

7.2 Подключение к ПО «Owen Configurator»

Перед подключением и настройкой прибора следует скачать ПО «Owen Configurator» с официального сайта компании «OBEH» owen.ru и установить на ПК.

Для подключения прибора к ПО «Owen Configurator» следует:

1. Подключить прибор к ПК с помощью кабеля Micro-USB (не входит в комплект поставки).

ПРИМЕЧАНИЕ При подключении прибора к ПК с помощью кабеля Micro-USB подача основного питания прибора не требуется, так как питание осуществляется от порта USB.

- 2. Открыть ПО «Owen Configurator».
- 3. В строке меню выбрать «Добавить устройства».

Рисунок 7.1 – Интерфейс ПО «Owen Configurator»

4. В оВ открывшемся окне в поле «Интерфейс» выбрать «Устройство с последовательным интерфейсом».

Сетевые настройки

Интерфейс	
Устройство с последовательным интерфейсом USB (COM9)	•
Wireless80211 (owen.ru) Wireless80211	
Ethernet (owen.ru)	
Ethernet	
СОМ4	
COM2	

Рисунок 7.2 – Выбор интерфейса

5. В поле «Протокол» выбрать «Owen Auto Detection Protocol».

Протокол	
Owen Auto Detection Protocol	-
Modbus RTU	
Owen Auto Detection Protocol	
Овен	

Рисунок 7.3 – Выбор протокола

6. Выбрать «Найти одно устройство», ввести адрес подключенного прибора и нажать «Найти».

٦	ПРИМ	ІЕЧАНИЕ	
		~	

1 Адрес прибора для интерфейса USB всегда равен 1 и не может быть изменен.

🕘 Найти	одно устройство)		
Адрес				
1				
Найти				

Рисунок 7.4 – Ввод адреса устройства

7. После появления устройства в правой части окна нажать «Добавить устройства».

			Выбрать все Снять все	
	Имя	Адрес	Версия	
\checkmark	СМИ2-М	1 (COM4)	0.1	$\langle \rangle$
		Добавить устро	ойства Отмена	

Рисунок 7.5 – Выбор устройства

7.3 Настройка параметров Modbus

7.3.1 Общие настройки

Для всех режимов работы прибора к общим настройкам относятся настройки порта RS-485 и настройки Modbus.

Прибор поддерживает следующие режимы работы по протоколу Modbus:

- Master;
- Slave;
- Spy.

Параметры порта RS-485 в ПО «Owen Configurator» находятся во вкладке **Настройки порта RS-485**. Описание параметров порта RS-485 прибора приведено в таблице 7.1.

Таблица 7.1 –	 Настройка 	порта	RS-485
---------------	-------------------------------	-------	--------

Параметр	Описание	Диапазон значений	
Скорость СОМ-порта	Скорость обмена данными между	2400, 4800, 9600, 14400, 19200,	
	приборами	38400, 57600, 115200 бит/с	
Размер данных	Количество бит полезной информации	8 бит	

Параметр	Описание	Диапазон значений
Количество стоп-бит	Количество стоп-бит	1 стоп-бит,
		2 стоп-бита
Контроль четности	Режим контроля четности	Нет,
		Чет,
		Нечет
Признак конца кадра	Признак, по которому индикатор	IDLE frame – интервал равен
	определяет конец пакета данных,	времени, требуемому для передачи
	Конец пакета определяется	одного байта данных (включая
	отсутствием передачи данных по линии связи в течение заданного интервала	стартовый бит, стоповый бит и бит
	времени	четности) на выбранной скорости; 3.5 char (Modbus spec) – интервал равен времени, требуемому для передачи 3,5 байтов данных (включая стартовый бит, стоповый бит и бит четности) на выбранной скорости. Данное значение соответствует спецификации протокола Modbus

Настройки Modbus находятся во вкладке **Индикатор** → **Общие настройки Modbus**. Описание общих параметров Modbus приведено в таблице 7.2.

Параметр	Описание	Диапазон значений
Slave ID индикатора	Адрес индикатора в сети Modbus	1255
Порядок байт	Тип перестановки байтов/регистров	Не менять,
	полученной информации*	Инверсия только байтов,
		Инверсия только регистров,
		Инверсия байтов и регистров
Таймаут безопасного	Время, через которое прибор переходит в	060 c
состояния	безопасное состояние (см. раздел 7.7) в	
	случае отсутствия получения данных. Если	
	установить значение 0, то прибор не	
	переходит в безопасное состояние и	
	отображает последнее полученное	
	значение	
Битовая маска	Значение типа Портрет (см. раздел 7.4),	0FFFF FFFF
безопасного	которое выводится на дисплей прибора в	
состояния**	случае перехода в безопасное состояние	
Цвет безопасного	Цвет отображения данных на дисплее в	Зеленый,
состояния	случае перехода в безопасное состояние	Красный,
		Желтый

Таблица 7.2 – Настройка общих параметров Modbus

Параметр	Описание	Диапазон значений
Мигание безопасного	Дисплей прибора начнет мигать в случае	Выключено,
состояния	перехода в безопасное состояние	Включено
ПРИМЕЧАНИЕ * Пример перестано Пример перестано Пример перестано ** В ПО «Owen Cor формате HEX.	ювки только байтов: 0xAABBCCDD → 0xBBAA вки только регистров: 0xAABBCCDD → 0xCCD вки байтов и регистров: 0xAABBCCDD → 0xDI nfigurator» значение битовой маски безопасног	DDCC. DAABB. ОССВВАА. о состояния вводится в

7.3.2 Режим Modbus Master

При использовании прибора в сети RS-485 в качестве **Мастера сети** (режим **Modbus Master**) допускается подключение к нему только одного подчиненного (**Slave**) устройства. Схема подключения приборов приведена на рисунке.

Рисунок 7.6 – Схема подключения для режима Modbus Master

ПРИМЕЧАНИЕ

* Терминальные резисторы устанавливаются в начале и конце линии RS-485 в случае необходимости. Рекомендуемое сопротивление терминального резистора равно 120 Ом, мощность – 0,25 Вт.

В режиме **Modbus Master** прибор отправляет запросы с функцией чтения регистров на подчиненное устройство по протоколу Modbus RTU или Modbus ASCII с определенной периодичностью. После каждого запроса прибор ожидает ответ от подчиненного устройства в течение таймаута ответа. После получения ответа прибор выводит данные на дисплей. Если ответ от устройства не был получен за время таймаута, прибор отправляет следующий запрос и запускает отсчет таймаута безопасного состояния. В случае отсутствия ответа от устройства за время таймаута безопасного состояния прибор переходит в режим безопасного состояния (см. раздел 7.7).

Для перехода в режим работы Modbus Master следует во вкладке Индикатор выбрать значение MASTER для параметра Режим работы устройства.

Параметры режима Modbus Master находятся во вкладке Индикатор → Настройки Modbus Master. Описание параметров режима Modbus Master приведено в таблице 7.3.

Параметр	Описание	Диапазон значений
Протокол	Используемый протокол обмена (RTU – Modbus	RTU,
	RTU, ASCII – Modbus ASCII)	ASCII
Адрес	Адрес подключенного к прибору подчиненного	1255
устройства	устройства	

Таблица 7.3 – Настройка режима Modbus Master

Параметр	Описание	Диапазон значений
Таймаут ответа	Время ожидания прибором ответа от подчиненного	30010000 мс
	устройства	
Функция Modbus	Функция Modbus, используемая в запросе	(0x03) Read Holding Registers,
		(0x04) Read Input Registers
Адрес регистра	Адрес начального считываемого регистра	065535
	подчиненного устройства. Количество	
	считываемых регистров зависит от выбранного	
	типа данных (см. раздел 7.4)	
Период опроса	Период опроса подчиненного устройства	100…65535 мс

7.3.3 Режим Modbus Slave

В режиме **Modbus Slave** прибор получает запросы от **Macтepa сети**. Протокол обмена (Modbus RTU или Modbus ASCII) определяется автоматически при получении запроса.

ПРЕДУПРЕЖДЕНИЕ

В режиме Modbus Slave в случае изменения значений параметров по интерфейсу RS-485 не происходит их автоматической записи во flash-память. Это связано с тем, что ресурс flashпамяти ограничен (10000 перезаписей). При записи значений по интерфейсу MicroUSB происходит автоматическая запись во flash-память. Если требуется изменять параметры индикатора по интерфейсу RS-485 с их сохранением во flash-память - следует после записи значений параметров сгенерировать единичный импульс в параметре Сохранить настройки во flash-память по RS (см. таблицу А.2). Запись во flash-память однократно выполняется в момент изменения значения данного параметра с 0 на 1 (детектируется передний фронт). Во время записи параметров во flash-память кратковременно изменяется яркость индикатора и увеличивается время ответа прибора (оно может достигать 200 мс - это следует учитывать при настройке таймаута в мастер-устройстве). Следует отметить, что исчерпание ресурса flashпамяти приведет к невозможности сохранения параметров во flash-память после их изменения (то есть после перезагрузки прибора по питанию будут использованы предыдущие значения параметров), поэтому настоятельно не рекомендуется производить запись параметров во flashпамять с высокой частотой. Для определения остаточного ресурса flash-памяти в приборе присутствует параметр Статус прибора — Остаток ресурса flash-памяти.

Схема подключения прибора в качестве **подчиненного** (режим **Modbus Slave**) устройства к **Мастеру сети** приведена на рисунке 7.7.

Рисунок 7.7 – Схема подключения для режима Modbus Slave

ПРИМЕЧАНИЕ

* Терминальные резисторы устанавливаются в начале и конце линии RS-485 в случае необходимости. Рекомендуемое сопротивление терминального резистора равно 120 Ом, мощность – 0,25 Вт.

Для перехода в режим работы Modbus Slave следует во вкладке Индикатор выбрать значение SLAVE для параметра Режим работы устройства.

В ПО «Owen Configurator» режиму **Modbus Slave** соответствует только один параметр – **Slave ID индикатора**, который находится во вкладке **Индикатор** → **Общие настройки Modbus**. Параметр определяет адрес прибора в сети RS-485 и может принимать значения от 1 до 255.

7.3.4 Режим Modbus Spy

В режиме **Modbus Spy** прибор «прослушивает» интерфейс RS-485, ожидая запросы с заданными параметрами (адрес устройства, код функции, адрес регистра). В случае детектирования запроса с заданными параметрами прибор выводит на дисплей полученное значение. Протокол обмена (Modbus RTU или Modbus ASCII) определяется автоматически при детектировании запроса.

Для корректной работы индикатора в режиме **Modbus Spy** в настройках устройства, которое выполняет функцию Modbus Master, необходимо установить период между запросами не менее 5 мс. В различном ПО период между запросами может называться по-разному - например, *время между* фреймами, framing time, задержка запроса после получения ответа, inter-frame delay и т. п.

Схема подключения приборов приведена на рисунке 7.8.

Рисунок 7.8 – Схема подключения для режима Modbus Spy

|ПРИМЕЧАНИЕ

* Терминальные резисторы устанавливаются в начале и конце линии RS-485 в случае необходимости. Рекомендуемое сопротивление терминального резистора равно 120 Ом, мощность – 0,25 Вт.

Для перехода в режим работы Modbus Spy следует во вкладке Индикатор выбрать значение SPY для параметра Режим работы устройства.

Параметры режима Modbus Spy находятся во вкладке Индикатор → Настройки Modbus Spy. Описание параметров режима Modbus Spy приведено в таблице 7.4.

Таблица 7.4 – Настройка	режима	Modbus	Spy
-------------------------	--------	--------	-----

Параметр	Описание	Диапазон значений
Адрес устройства*	Адрес подчиненного устройства в запросе	0255**
Номер функции	Функция Modbus, используемая в запросе	(0x03) Read Holding Registers,
		(0x04) Read Input Registers,
		(0x06) Write Single Register,
		(0x10) Write Multiple Registers

	Параметр	Описание	Диапазон значений			
Адрес	065535					
	ПРИМЕЧАНИЕ					
	* Адрес устройства	а не должен совпадать с адресом прибора, зад	анном в параметре Slave ID			
	индикатора из гру	ппы параметров Общие настройки Modbus.				
	** В случае выбора	а адреса 0 прибор отслеживает широковещате	льные пакеты от Мастера			
	сети. Если подключ	чить несколько индикаторов к Мастеру сети и в	зыбрать адрес 0, то можно			
	выводить на каждо	м индикаторе разные данные, указав на прибо	орах соответствующие данным			
	адреса регистров.					
	*** Адрес регистра	должен находиться в диапазоне регистров в з	апросе от Мастера сети:			
	$[REG_{spy}; REG_{spy} + Q_{type} - 1] \in [ST_{frame}; ST_{frame} + Q_{frame} - 1], ($					
	где REG _{spy} – адрес	регистра, заданный в настройках прибора;				
	Q _{type} – количество регистров для типа переменной, отображаемой прибором;					
	ST _{frame} – адрес начального регистра в запросе;					
	Q _{frame} – количество	регистров в запросе.				

Пример

Если в запросе от Мастера сети ST_{frame} = 40, Q_{frame} = 20 (таким образом, в запросе будут считываться или записываться регистры 40... 59) будет получена следующая реакция прибора при различных полочитах рожима Spure

параметрах режима Spy:

- REG_{spy} = 59, тип переменной INT (Q_{type} = 1) прибор выведет на дисплей считанную информацию.
- REG_{spy} = 59, тип переменной DINT (Q_{type} = 2) прибор не отобразит информацию на дисплее, так как в данном случае прибор ожидает получить информацию из регистров 59–60, а регистр 60 отсутствует в запросе Мастера сети.

7.4 Типы данных

Прибор поддерживает отображение значений следующих типов данных:

- целочисленные значения (INT, UINT, DINT, UDINT);
- значения с плавающей точкой (REAL);
- строки (STRING);
- битовая маска сегментов индикатора (Портрет);
- время (Время).

В ПО «Owen Configurator» можно задать значения для разных типов данных для тестового вывода на дисплей прибора во вкладке **Индикатор** — **Оперативные значения**. Для отображения на приборе тестовых значений следует также выбрать соответствующий тип данных во вкладке **Индикатор** — **Настройки** — **Тип переменной**. Описание параметров типов данных приведено в таблице 7.5.

Тип данных	Описание	Количество регистров
INT	Целое число со знаком	1 (2 байта)
UINT	Целое число без знака	1 (2 байта)
DINT	Целое число со знаком	2 (4 байта)
UDINT	Целое число без знака	2 (4 байта)
REAL	Значение с плавающей точкой (число одинарной	2 (4 байта)
	точности согласно стандарту IEEE 754)	
STRING*	Строка с кодировкой ASCII с символами латинского	216 (432 байта)
	алфавита, цифрами и точкой	
Портрет	Битовая маска сегментов индикатора	2 (4 байта)
Время	Время в формате XX:YY**	2 (4 байта)

Таблица 7.5 – Типы данных

ПРИМЕЧАНИЕ

i

* Для определения количества регистров при работе прибора в режимах Modbus Master и Modbus Spy используется параметр **Длина строки**. При работе в режиме Modbus Slave длина строки принимается равной 32 символам (16 регистров). Не допускается чтение/запись фрагмента строки (в запросе мастера сети должен быть указан размер данных: 16 регистров). В режиме Modbus Slave параметр **Длина строки** используется для бегущей строки – при «прокрутке» строки будет отображаться количество символов, которое указано в данном параметре.

** XX:YY рассчитывается по формулам XX = N / 60 (целая часть), YY = N / 60 (остаток от деления), где N – значение, которое приходит на прибор.

В случае получения прибором значения 1000 на дисплее будет отображено 16:40.

Соответствие начертания символов на цифровом индикаторе буквам латинского алфавита и их ASCIIкоды представлено в таблице 7.6.

Код ASCII	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	.A	.В	.C	.D	.E	.F
2.														—		
3.	0 []	1 /	2 2	3 3	4 4	5 5	6 Б	7 7	8 <i>8</i>	9 9						
4.		А <i>П</i>	В Ь	C Ľ	D d	E E	F F	G มี	H H	ļ	ل بر	K Y	L L	M	N n	0 0
5.	P P	Q 9	R r	S S	T E	U U	V u	ر ۳	Х	Y У	Z					
6.		а <i>П</i>	b Ь	C C	d d	e E	f F	д Г	h አ	i L	j L	k ¦⁄	L L	m r	n n	0
7.	р <i>Р</i>	q q	r r	s 5	t E	u ∐	V L	W U	х ц	у Ч	Z					

Таблица 7.6 – ASCII-коды символов на цифровом индикаторе

Соответствие битов в маске сегментам индикатора при выводе на дисплей значения типа Портрет приведено в таблице 7.7. Младший байт маски соответствует крайнему правому сегменту индикатора, старший байт маски – крайнему левому сегменту.

	Сегмент	Номер бита
	A	0
A	В	1
	С	2
r B	D	3
<u> </u>	E	4
EC	F	5
D	G	6
	DP	7

Таблица 7.7 – Соответствие битов в байте сегментам индикатора

7.5 Индикация

Параметры индикатора находятся во вкладке **Индикатор** → **Настройки**. Описание параметров индикатора приведено в таблице 7.8.

Таблица	7.8 – Ha	астройка	индикации
---------	----------	----------	-----------

Параметр		Диапазон
Параметр	Описание	
Тип переменной	Тип переменной, отображаемой на дисплее	INT,
		UINT,
		DINT,
		UDINT,
		REAL,
		STRING,
		Портрет,
		Время
Цвет	Цвет индикации. При использовании встроенной логики (см.	Зеленый,
	раздел 7.6) цвет может изменяться в зависимости от величины	Красный,
	отображаемого значения	Желтый
Яркость	Яркость дисплея	0100 %
Число ведущих	Число ведущих нулей на дисплее перед значением. Используется	0, 1, 2, 3
нулей	только с целочисленными значениями.	

Параметр	Описание	Диапазон
		значений
	Пример отображения значения «1» на дисплее при различных	
	значениях параметра Число ведущих нулей:	
	$0 \rightarrow$ на дисплее <i>t</i> ;	
	1 → на дисплее <i>🛛 </i>	
	2 → на дисплее 🖽 <i>і</i> ;	
	3 → на дисплее 000 /	
Положение	Положение десятичной точки при отображении значения на	,
десятичной точки	дисплее. Используется только с целочисленными значениями и	,
	значениями с плавающей точкой.	,
	Пример использования с целочисленным значением «5000»:	
	<i>–––– →</i> на дисплее <i>5000</i> ;	
	<i>– – – . – →</i> на дисплее 500.0;	
	<i>−−.− →</i> на дисплее 50.00;	
	–. – – → на дисплее 5.000.	
	Пример использования со значением с плавающей точкой	
	«1.234»:	
	<i>–––– →</i> на дисплее <i>1.234</i> ;	
	<i>–––.–</i> → на дисплее <i>{2</i> ;	
	→ на дисплее <i>123</i> ;	
	– . – – – → на дисплее 1234	
Коэффициент	Коэффициент, прибавляемый к значению перед выводом на	-999.09999.0
сдвига	дисплей. Используется только с целочисленными значениями	
	(преобразует целочисленное значение в значение с плавающей	
	точкой) и значениями с плавающей точкой.	
	При использовании коэффициента значение может выйти за	
	допустимый диапазон отображаемых на дисплее значений, что	
	приведет к появлению на дисплее ошибки (см. раздел 7.7).	
	Пример использования с целочисленным значением «5»:	
	1.0 → на дисплее <i>Б.000</i> ;	
	–1.0 → на дисплее Ч.000;	
	5.0 → на дисплее Ю.ОО;	
	–5.0 → на дисплее 0.000.	
	Пример использования со значением с плавающей точкой	
	«5.678»:	
	1.0 → на дисплее <i>Б.Б.</i> ТВ;	
	$-1.0 \rightarrow$ на лисплее 4578 :	
	5.0 → на дисплее	
	$-5.0 \rightarrow$ на дисплее $\square 5 \square$	
Коэффициент	Коэффициент, на который значение умножается перед выводом	-999.09999.0
наклона	на дисплей. Используется только с целочисленными значениями	
-		I

Параметр	Описание	Диапазон
	Описание	значений
	(преобразует целочисленное значение в значение с плавающей	
	точкой) и значениями с плавающей точкой.	
	При использовании коэффициента значение может выйти за	
	допустимый диапазон отображаемых на дисплее значений, что	
	приведет к появлению на дисплее ошибки (см. раздел 7.7).	
	Пример использования с целочисленным значением 5:	
	1.0 → на дисплее 5;	
	–1.0 → на дисплее -5.00;	
	5.0 → на дисплее <i>25.00</i> ;	
	<i>–</i> 5.0 → на дисплее <i>-25.0</i> .	
	Пример использования со значением с плавающей точкой 5.678:	
	1.0 → на дисплее 5 <i>.Б Ъ</i> ;	
	–1.0 → на дисплее -5.67;	
	5.0 → на дисплее <i>28.3В</i> ;	
	<i>–</i> 5.0 → на дисплее <i>-28.3</i>	
Мигание	Наличие мигания значения на дисплее. Мигание также может	Выключено,
	зависеть от встроенной логики (см. раздел 7.6) или безопасного	Включено
	состояния (см. таблицу 7.2)	
Период мигания	Время одного цикла наличия и отсутствия значения на дисплее	2503000 мс
	(скважность = 50 %)	
	Период мигания	
Режим	Режим отображения значения на дисплее. В статичном режиме	Статичный,
отображения	значение не движется по дисплею. В режиме бегущей строки	Бегущая
	значение циклически посимвольно сдвигается в направлении	строка,
	справа налево. После исчезновения с дисплея значение вновь	Числовая
	начинает посимвольно сдвигаться справа налево	бегущая строка
	В режиме числовой бегущей строки проверка значений типа INT,	
	UINT, DINT, UDINT и REAL на принадлежность диапазону	
	(-9999999) не производится. Это позволяет отображать в	
	режиме числовой бегущей строки значения, число знаков в	
	которых превышает число разрядов индикатора. Точность	
	значений с плавающей точкой (REAL) в этом случае ограничена 3	
	знаками после запятой. Если общее число знаков не превышает	
	4, то значение отображается статично.	
Период сдвига	Период перемещения значения на дисплее на один символ	1001500 мс
бегущей строки	влево.	

7.6 Встроенная логика

Режим встроенной логики предназначен для изменения визуальных параметров вывода значения на дисплей (цвет и мигание) в зависимости от принадлежности значения одному из задаваемых диапазонов. Прибор поддерживает до 5 диапазонов (зон). Для включения режима встроенной логики следует во вкладке Индикатор — Встроенная логика выбрать значение Включено для параметра Встроенная логика.

ПРИМЕЧАНИЕ

i

Режим встроенной логики может использоваться только для целочисленных значений и значений с плавающей точкой.

По умолчанию в режиме встроенной логики используется только одна зона – **Зона 5**. Параметры **Зоны 5** находятся во вкладке **Индикатор** → **Встроенная логика** → **Зона 5**. Описание параметров **Зоны 5** приведено в таблице 7.9.

Таблица 7.9 – Параметры Зоны 5

Параметр	Описание	Диапазон значений
Цвет	Цвет индикации	Зеленый,
		Красный,
		Желтый
Мигание	Наличие мигания значения на дисплее	Выключено,
		Включено

Для корректной работы встроенной логики требуется задействовать и настроить как минимум еще одну зону в дополнение к Зоне 5. Параметры Зон 1 (2, 3, 4) находятся во вкладке Индикатор → Встроенная логика → Зона 1 (2, 3, 4). Описание параметров Зоны 1 (2, 3, 4) приведено в таблице 7.10.

Параметр	Параметр Описание					
Задействовать	Использование зоны в режиме встроенной	Выключено,				
	логики	Включено				
Верхняя граница*	Верхняя граница зоны	-999 9999				
Гистерезис**	Значение относительно верхней границы	0 9999				
	зоны, спустя которое производится переход					
	в следующую зону (при работе в области					
	отрицательных значений) или возвращение					
	в текущую зону (при работе в области					
	положительных значений)					
Цвет	Цвет индикации	Зеленый,				
		Красный,				
		Желтый				
Мигание	Наличие мигания значения на дисплее	Выключено,				
		Включено				
ПРИМЕЧАНИЕ						
В случае исполь	зования нескольких зон верхняя граница зоны с	с большим номером должна				
превышать верхні Z ₁ < Z ₂ < Z ₃ < Z ₄ .	ою границу зоны с меньшим номером:					
В противном случ	ае прибор отображает на дисплее сообщение с	об аварийной ситуации (см.				
раздел 7.7). Верхн	няя граница Зоны 5 не задается и принимается	равной максимальному				
допустимому знач	ению для вывода на дисплей.	-				
** Гистерезис не м	южет быть больше разности между верхними г	раницами соседних зон, в				
противном случає	прибор отображает на дисплее сообщение об	аварийной ситуации (см.				
раздел 7.7). Гисте	раздел 7.7). Гистерезис Зоны 5 отсутствует, так как Зона 5 является последней на числовой оси					
и из нее нельзя перейти в «следующую» зону.						

Таблица 7.10 – Параметры Зона 1 (2, 3, 4)

Пример использования режима встроенной логики с одной рабочей зоной

При изменении значения визуальные параметры вывода значения на дисплей не изменяются (например, **Зона 5** – зеленый цвет индикатора, мигание выключено).

Рисунок 7.9 – Изменение визуальных параметров при использовании одной рабочей зоны

Зона 5 соответствует диапазону значений [-999; 9999].

Рисунок 7.10 – Пример встроенной логики для одной рабочей зоны

Пример использования режима встроенной логики с двумя рабочими зонами

Пусть верхняя граница **Зоны 1** равна 100, гистерезис равен 10. В случае перехода из одной зоны в другую визуальные параметры вывода значения на дисплей изменяются (например, **Зона 1** – зеленый цвет индикатора, мигание выключено; **Зона 5** – желтый цвет индикатора, мигание включено).

Рисунок 7.11 – Изменение визуальных параметров при использовании двух рабочих зон

Если значение меняется в большую сторону, то **Зона 1** соответствует диапазону значений [–999; 100), **Зона 5** – диапазону значений [100; 9999].

Если значение меняется в меньшую сторону, то **Зона 1** соответствует диапазону значений [–999; 90), **Зона 5** – диапазону значений [90; 9999].

Рисунок 7.12 – Пример встроенной логики для двух рабочих зон

Пример использования режима встроенной логики с двумя рабочими зонами (верхняя граница **Зоны 1** равна –100, гистерезис равен 10) представлен на рисунке 7.13. При переходе из одной зоны в другую визуальные параметры вывода значения на дисплей изменяются.

Если значение меняется в большую сторону, то **Зона 1** соответствует диапазону значений [–999; –90], **Зона 5** – диапазону значений (–90; 9999].

Если значение меняется в меньшую сторону, то **Зона 1** соответствует диапазону значений [–999; –100), **Зона 5** – диапазону значений [–100; 9999].

Рисунок 7.13 – Пример встроенной логики для двух рабочих зон

Пример использования режима встроенной логики с тремя рабочими зонами

Пусть верхняя граница **Зоны 1** равна 100, гистерезис равен 10, верхняя граница **Зоны 2** равна 150, гистерезис равен 20. В случае перехода из одной зоны в другую визуальные параметры вывода значения на дисплей изменяются (например, **Зона 1** – зеленый цвет индикатора, мигание выключено, **Зона 2** – желтый цвет индикатора, мигание включено, **Зона 5** – красный цвет индикатора, мигание выключено).

Рисунок 7.14 – Изменение визуальных параметров при использовании трех рабочих зон

Если значение меняется в большую сторону, то **Зона 1** соответствует диапазону значений [–999; 100), **Зона 2** – диапазону значений [100; 150), **Зона 5** – диапазону значений [150; 9999].

Если значение меняется в меньшую сторону, то **Зона 1** соответствует диапазону значений [–999; 90), **Зона 2** – диапазону значений [90; 130), **Зона 5** – диапазону значений [130; 9999].

Рисунок 7.15 – Пример встроенной логики для трех рабочих зон

Пример использования режима встроенной логики с тремя рабочими зонами (верхняя граница **Зоны 1** равна – 150, гистерезис равен 20, верхняя граница **Зоны 2** равна – 100, гистерезис равен 10) представлен на рисунке 7.16. При переходе из одной зоны в другую визуальные параметры вывода значения на дисплей изменяются.

Если значение меняется в большую сторону, то **Зона 1** соответствует диапазону значений [–999; –130], **Зона 2** – диапазону значений (–130; –90], **Зона 5** – диапазону значений (–90; 9999].

Если значение меняется в меньшую сторону, то **Зона 1** соответствует диапазону значений [–999; –150), **Зона 2** – диапазону значений [–150; –100), **Зона 5** – диапазону значений [–100; 9999].

Рисунок 7.16 – Пример встроенной логики для трех рабочих зон

Пример использования режима встроенной логики с тремя рабочими зонами (верхняя граница **Зоны 1** равна – 100, гистерезис равен 10, верхняя граница **Зоны 2** равна 100, гистерезис равен 10) представлен на рисунке 7.17. При переходе из одной зоны в другую визуальные параметры вывода значения на дисплей изменяются.

Если значение меняется в большую сторону, то **Зона 1** соответствует диапазону значений [–999; –90], **Зона 2** – диапазону значений (–90; 100), **Зона 5** – диапазону значений [100; 9999].

Если значение меняется в меньшую сторону, то **Зона 1** соответствует диапазону значений [–999; –100), **Зона 2** – диапазону значений [–100; 90), **Зона 5** – диапазону значений [90; 9999].

Рисунок 7.17 – Пример встроенной логики для трех рабочих зон

7.7 Индикация ошибок

Во время работы с прибором могут возникнуть следующие ошибки:

- прибор получил значение, которое невозможно отобразить на дисплее (значение не входит в допустимый диапазон);
- встроенная логика прибора настроена некорректно;
- прибор не получил значение за отведенное время и перешел в безопасное состояние.

ПРИМЕЧАНИЕ

i

После подачи питания прибор находится в безопасном состоянии. Выход из безопасного состояния происходит в момент получения корректного запроса.

Индикация ошибок описана в таблице 7.11.

Таблица 7.11 – Индикация ошибок

Сообщение		Номер бита
на дисплее	причина появления	регистра статуса
ErrL	Полученное значение (целочисленное значение или значение	27
	с плавающей точкой) меньше минимального допустимого для	
	отображения на дисплее.	
	Пример: N < -999,	
	где N – полученное значение	
ErrH	Полученное значение (целочисленное значение или значение	28
	с плавающей точкой) больше максимального допустимого для	
	отображения на дисплее.	
	Пример: N > 9999,	
	где N – полученное значение	

Сообщение		Номер бита
на дисплее	причина появления	регистра статуса
Erri	Верхняя граница зоны с большим номером не превышает	26
	верхнюю границу зоны с меньшим номером.	
	Пример: Z ₂ < Z ₁ ,	
	где Z ₁ и Z ₂ – верхние границы Зоны 1 и Зоны 2 соответственно	
	Гистерезис больше разницы между верхними границами	
	соседних зон.	
	Пример: H ₂ > Z ₂ – Z ₁ ,	
	где H ₂ – значение гистерезиса Зоны 2;	
	Z ₁ и Z ₂ – верхние границы Зоны 1 и Зоны 2 соответственно	
Отображение	Время ожидания отображаемых данных превысило	—
битовой маски	установленный таймаут ответа и последующий таймаут	
безопасного	безопасного состояния.	
состояния		
(значение типа	Пример:	
Портрет)	$T_w > T_a + T_{ss},$	
	где Т _w – время ожидания отображаемых данных;	
	Т _а – таймаут ответа (только для режима Modbus Master, для	
	остальных режимов работы равен 0);	
	T _{ss} – таймаут безопасного состояния (для всех режимов	
	работы)	

7.8 Установка пароля

OBEH Конфигуратор поддерживает установку пароля на подключенный прибор с помощью команды Установить пароль.

После установки пароля для подключения к прибору потребуется ввести заданный пароль.

Установленный пароль не сбрасывается даже при перепрошике прибора. В случае утраты пароля произвести его сброс возможно только в сервисном центре.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

8.2 Обновление встроенного ПО

Встроенное ПО прибора обновляется с помощью утилиты, которая доступна на сайте owen.ru.

Для обновления встроенного ПО следует:

- 1. Отключить питание прибора.
- 2. Нажать и удерживать сервисную кнопку.
- 3. Подключить прибор к ПК по интерфейсу USB.
- 4. Отпустить сервисную кнопку после появления на дисплее надписи LoRd.
- 5. Запустить утилиту и обновить встроенное ПО прибора.

9 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям TP TC (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

10 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

11 Транспортирование и хранение

Прибор транспортируется в закрытом транспорте любого вида. Прибор следует перевозить в транспортной таре поштучно или в контейнерах. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 ГОСТ 15150 с соблюдением мер защиты от ударов и вибраций.

Условиях хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 ГОСТ 15150. В воздухе не должны присутствовать агрессивные примеси.

Приборы следует хранить на стеллажах.

12 Комплектность

Наименование	Количество
Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство	1 экз.
Комплект крепежных элементов	1 шт.
Уплотнительная резинка	1 шт.
Соединительный четырехконтактный разъем питания и связи	1 шт.

ПРИМЕЧАНИЕ

| i

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Список регистров Modbus

Таблица А.1 – Чтение и запись параметров по протоколу Modbus

Операция	Функция
Чтение	3 (0х03) или 4 (0х04)
Запись	6 (0x06) или 16 (0x10)

Список регистров Modbus считывается с прибора с помощью ПО «Owen Configurator» во вкладке «Параметры устройства». Список регистров Modbus представлен в таблице А.2.

ПРИМЕЧАНИЕ

Заводские настройки выделены полужирным курсивом.

ПРЕДУПРЕЖДЕНИЕ

В режиме Modbus Slave в случае изменения значений параметров по интерфейсу RS-485 не происходит их автоматической записи во flash-память. Это связано с тем, что pecypc flashпамяти ограничен (10000 перезаписей). При записи значений по интерфейсу MicroUSB происходит автоматическая запись во flash-память. Если требуется изменять параметры индикатора по интерфейсу RS-485 с их сохранением во flash-память - следует после записи значений параметров сгенерировать единичный импульс в параметре Сохранить настройки во flash-память по RS (см. таблицу А.2). Запись во flash-память однократно выполняется в момент изменения значения данного параметра с 0 на 1 (детектируется передний фронт). Во время записи параметров во flash-память кратковременно изменяется яркость индикатора и увеличивается время ответа прибора (оно может достигать 200 мс - это следует учитывать при настройке таймаута в мастер-устройстве). Следует отметить, что исчерпание ресурса flashпамяти приведет к невозможности сохранения параметров во flash-память после их изменения (то есть после перезагрузки прибора по питанию будут использованы предыдущие значения параметров), поэтому настоятельно не рекомендуется производить запись параметров во flashпамять с высокой частотой. Для определения остаточного ресурса flash-памяти в приборе присутствует параметр Статус прибора — Остаток ресурса flash-памяти.

Таблица А.2 – Регистры обмена по протоколу Modbus

Параметр	Значение	Адрес регистра		Тип доступа	Формат		
		DEC	HEX		данных		
	Настройки порта RS-485						
Скорость СОМ-порта	3 – 2400 бит/с,	521	0x0209	Чтение и	Enum 14*		
	4 – 4800 бит/с,			запись			
	5 – 9600 бит/с ,						
	6 – 14400 бит/с,						
	7 – 19200 бит/с,						
	8 – 38400 бит/с,						
	9 – 57600 бит/с,						
	10 – 115200 бит/с						
Размер данных	0 – 8 бит	522	0x020A	Чтение и запись	Enum 2		
Количество стоп-бит	0 — 1 стоп-бит,	523	0x020B	Чтение и	Enum 2		
	1 – 2 стоп-бита			запись			
Контроль четности	0 — Hem,	524	0x020C	Чтение и	Enum 3		
	1 – Чет,			запись			
	2– Нечет						
Признак конца кадра	0 – IDLE frame,	528	0x0210	Чтение и	Unsigned 8		
	1 – 3.5 char (Modbus			запись			
	spec)						
Индикатор							

Параметр	Значение	Адрес	регистра	Тип доступа	Формат
		DEC	HEX		данных
Режим работы	0 – SLAVE,	4000	0x0FA0	Чтение и	Enum 3
устройства	1 – MASTER,			запись	
	2 – SPY				
Сохранить настройки	0 - Отсутствие	5000	0x1388	Чтение и	Enum 2
во flash-память по RS	команды			запись	
	1 - Сохранить				
	Индикатор На	стройки М	lodbus Mas	ter	
Протокол	0 – RTU,	4020	0x0FB4	Чтение и	Enum 2
	1 – ASCII			запись	
Адрес устройства	1255	4021	0x0FB5	Чтение и запись	Unsigned 8
Таймаут ответа	300 1000 10000 мс	4022	0x0FB6	Чтение и запись	Unsigned 16
Функция Modbus	0 – (0x03) Read	4023	0x0FB7	Чтение и	Enum 2
	Holding Registers,			запись	
	1 – (0x04) Read Input				
	Registers				
Адрес регистра	0	4024	0x0FB8	Чтение и запись	Unsigned 16
Период опроса	100 200 65535 мс	4025	0x0FB9	Чтение и запись	Unsigned 16

Параметр Значение Формат Адрес регистра Тип доступа данных DEC HEX Индикатор | Настройки Modbus Spy 0...**1**...255 4040 0x0FC8 Unsigned 8 Адрес устройства Чтение и запись Номер функции 0 - (0x03) Read Holding 4041 0x0FC9 Чтение и Enum 4 запись Registers, 1 – (0x04) Read Input Registers, 2 - (0x06) Write Single Register. 3-(0x10) Write Multiple Registers 0...**1**...65535 4042 0x0FCA Чтение и **Unsigned 16** Адрес регистра запись Индикатор | Общие настройки Modbus 0x020F Unsigned 8 1...255 527 Чтение и Slave ID индикатора запись Порядок байт 0 – Не менять, 4061 0x0FDD Чтение и Enum 4 запись 1 – Инверсия только байтов, 2 – Инверсия только регистров. 3 – Инверсия байтов и регистров 4062 0x0FDE **Unsigned 16** Таймаут безопасного **0**...60 c Чтение и состояния запись Битовая маска 0....**70404046**.... 4063 0x0FDF Unsigned 32 Чтение и безопасного 4294967295 запись состояния 4065 0x0FE1 Цвет безопасного 0-Зеленый, Чтение и Enum 3 состояния запись 1 – Красный, 2 – Желтый Мигание безопасного 0-Выключено. 4066 0x0FE2 Чтение и Enum 2 состояния запись 1 – Включено Индикатор | Настройки индикатора 4100 0x1004 Enum 3 Цвет 0-Зеленый, Чтение и запись 1 – Красный, 2 – Желтый 0x1005 Яркость 0...75...100 % 4101 Чтение и Unsigned 8 запись 4102 Мигание 0-Выключено. 0x1006 Чтение и Enum 2 запись 1 – Включено 250...1000...3000 мс 0x1007 Unsigned 16 Период мигания 4103 Чтение и запись 4104 0x1008 Число ведущих нулей 0 - (0)Чтение и Enum 4 запись 1 - (1)2 - (2)3 – «3»

Параметр	Значение	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Период сдвига бегущей строки	100 …1500 мс	4105	0x1009	Чтение и запись	Unsigned 16
Режим отображения	0 – Статичны й,	4106	0x100A	Чтение и	Enum 3
	1 – Бегущая строка			запись	
	2 – Числовая бегущая				
	строка				
Тип переменной	0 – INT,	4107	0x100B	Чтение и	Enum 8
	1 – UINT,			запись	
	2 – DINT,				
	3 – UDINT,				
	4 – REAL,				
	5 – STRING,				
	6 – Портрет,				
	7 – Время				
Положение	0 – « »,	4108	0x100C	Чтение и	Enum 4
десятичной точки	1 – « »,			запись	
	2 – « »,				
	3 – « »				
Коэффициент сдвига	–999.0 0.0 9999.0	4109	0x100D	Чтение и запись	Float 32
Коэффициент наклона	-999.0 1.0 9999.0	4111	0x100F	Чтение и запись	Float 32
	Индикатор О	перативн	ые значени	я	I
INT	-32768 0 32767	4200	0x1068	Чтение и запись	Signed 16
UINT	0 65535	4201	0x1069	Чтение и запись	Unsigned 16
DINT	–2147483648… 0 … 2147483647	4202	0x106A	Чтение и запись	Signed 32
UDINT	0 4294967295	4204	0x106C	Чтение и запись	Unsigned 32
REAL	3.402823E+38 0 3.402823E+38	4206	0x106E	Чтение и запись	Float 32
STRING	432	4208	0x1070	Чтение и запись	String 256
Длина строки	4 32	4249	0x1099	Чтение и запись	Unsigned 8
Портрет	0 4294967295	4250	0x109A	Чтение и запись	Unsigned 32
Время	0 4294967295	4252	0x109C	Чтение и запись	Unsigned 32
	Индикатор	Встроенн	ная логика		
Встроенная логика	0 – Выключено,	4300	0x10CC	Чтение и	Enum 2
	1 – Включено			занись	
	Индикатор Вст	роенная л	огика Зон	ia 5	
Цвет	0 — Зеленый,	4301	Ux10CD	Чтение и запись	Enum 3
	1 — Красный,				
	2 – Желтый				

Параметр	араметр Значение Адрес регис ⁻		регистра	Тип доступа	Формат	
		DEC	HEX		данных	
Мигание	0 – Выключено,	4302	0x10CE	Чтение и	Enum 2	
	1 – Включено			запись		
Индикатор Встроенная логика Зона 1						
Задействовать	0 – Выключено,	4310	0x10D6	Чтение и	Enum 2	
	1 – Включено			запись		
Верхняя граница	–999.0 0.0 9999.0	4311	0x10D7	Чтение и запись	Float 32	
Гистерезис	0.0 9999.0	4313	0x10D9	Чтение и запись	Float 32	
Цвет	0 – Зеленый,	4315	0x10DB	Чтение и	Enum 3	
	1 — Красный ,			запись		
	2 – Желтый					
Мигание	0 – Выключено,	4316	0x10DC	Чтение и	Enum 2	
	1 – Включено			запись		
	Индикатор Вст	роенная л	огика Зон	ia 2		
Задействовать	0 – Выключено,	4320	0x10E0	Чтение и	Enum 2	
	1 – Включено			запись		
Верхняя граница	-999.0 0.0 9999.0	4321	0x10E1	Чтение и запись	Float 32	
Гистерезис	0.0 9999.0	4323	0x10E3	Чтение и запись	Float 32	
Цвет	0 – Зеленый,	4325	0x10E5	Чтение и	Enum 3	
	1 — Красный ,			запись		
	2 – Желтый					
Мигание	0 – Выключено,	4326	0x10E6	Чтение и	Enum 2	
	1 – Включено			запись		
	Индикатор Вст	роенная л	тогика Зон	ia 3		
Задействовать	0 – Выключено,	4330	0x10EA	Чтение и	Enum 2	
	1 – Включено			запись		
Верхняя граница	-999.0 0.0 9999.0	4331	0x10EB	Чтение и запись	Float 32	
Гистерезис	0.0 9999.0	4333	0x10ED	Чтение и запись	Float 32	
Цвет	0 – Зеленый,	4335	0x10EF	Чтение и	Enum 3	
	1 — Красный ,			запись		
	2 – Желтый					
Мигание	0 – Выключено,	4336	0x10F0	Чтение и	Enum 2	
	1 – Включено			запись		
	Индикатор Вст	роенная л	огика Зон	ia 4		
Задействовать	0 – Выключено,	4340	0x10F4	Чтение и	Enum 2	
	1 – Включено			запись		
Верхняя граница	-999.0 0.0 9999.0	4341	0x10F5	Чтение и запись	Float 32	
Гистерезис	0.0 9999.0	4343	0x10F7	Чтение и запись	Float 32	
Цвет	0 – Зеленый,	4345	0x10F9	Чтение и	Enum 3	
	1 — Красный ,			запись		
	2 – Желтый					

Параметр	Значение	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Мигание	0 – Выключено ,	4346	0x10FA	Чтение и	Enum 2
	1 – Включено			запись	
Статус прибора					
Статус	0 4294967295	61620	0xF0B4	Только чтение	Unsigned 32
Остаток ресурса	0100	61624	0xF0B8	Только чтение	Unsigned 16
flash-памяти					
ПРИМЕЧАНИЕ * Тип Enum идентичен типу Unsigned 16.					

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru отдел продаж: sales@owen.ru www.owen.ru per.:1-RU-65022-1.32